Get All Latest Research News done in the field of Physics, Chemistry, Medical Science, Electronics, Space, Environment , Nanotechnology, Computing and More

Please Join Us On Facebook and Twitter

Saturday, 15 June 2019

Quantum Teleportation Moves Entire Logic Operation


Teleportation

The quantum transporter transfers data of a quantum system (such as an ion) to another (one second ion), even though the two are completely isolated from each other.

In this form of real-life teleportation, only quantum information is carried, not matter - unlike the Star Trek version of "radiating" entire human beings from a spacecraft to a planet.

Quantum data teleportation has previously been demonstrated with ions and a variety of other systems, including a fiber-optic teleportation 6 km away .

Now physicists have been able to teleport not just a die, but a complete logical operation between two separate ions (electrically charged atoms), showing how future quantum computer programs can perform tasks on large-scale networks.

"We found that our logic operation works in all quantum-bit input states with 85-87% probability - far from perfect, but it's a start," said Professor Dietrich Leibfried of the National Institute of Standards and Technology NIST).

The work was attended by Professor Hilma Vasconcelos, Federal University of CearĂ¡.

Teleportation of logical operations 

For quantum computers to perform as expected, they are likely to need millions of quantum bits, or qubits , and ways of conducting operations between qubits distributed across machines and large-scale networks.

The teleportation of logical operations is one way of doing this without direct connections of quantum nature - physical connections for the exchange of classic information will probably still be necessary.

The team teleported an "NOT Controlled" (CNOT) logical operation between two qubits of beryllium ions located more than 340 micrometers apart, a distance that excludes any substantial direct interaction.

A logic operation CNOT inverts the second qubit from 0 to 1, or vice versa, only if the first qubit is 1; nothing happens if the first qubit is 0. In a typical quantum mode, the two qubits may be in "superposition", in which they have values ​​of 1 and 0 at the same time.

But the teleportation process depends on another quantum phenomenon, the interlacing, which "connects" the properties of the particles even when they are separated. A messenger pair of interlaced magnesium ions is used to transfer information between beryllium ions. 

Quantum truth table 

The teletransported CNOT process intertwined the two magnesium ions - an essential prior step - with a 95% success rate, while teleportation of the full logical operation succeeded 85% to 87% of the attempts.

To verify that the CNOT port was still functioning after being teleported, the researchers prepared the first qubit in 16 different combinations of input states and measured the outputs in the second qubit. This produced a generalized quantum truth table, showing that the process works.

This technique should become an important tool in the characterization of quantum information processes in future experiments. 


In this paper, we describe
the quantum gate teleportation between separated qubits in a trapped-ion processor , as well as in the case of Yong Wan, Daniel Kienzler, Stephen D. Erickson, Karl H. Mayer, Ting Rei Tan, Jenny J. Wu, Hilma M. Vasconcelos, Scott Glancy, Emanuel Knill, David J. Wineland, Andrew C. Wilson, Dietrich Leibfried Science Vol. 364, Issue 6443, pp. 875-878 DOI: 10.1126 / science.aaw9415

No comments:

Post a Comment