Get All Latest Research News done in the field of Physics, Chemistry, Medical Science, Electronics, Space, Environment , Nanotechnology, Computing and More

Please Join Us On Facebook and Twitter

Friday, 1 November 2019

MIT develops modular robots that can move, jump, recognize and coordinate


The rise of robotics in recent years has found many practical applications in everyday life. If individual robots perform certain tasks correctly, swarms of robots are usually more efficient. However, achieving optimal communication and coordination between all robots is a big challenge. In an attempt to remedy this situation, a team at MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) has developed a surprisingly simple concept: self-assembled robotic cubes that can overlap, jump into the air, and roll. On the ground.

Please support by visiting the ads in the post your little click can help us to keep posting stuff beneficial for general knowlege, please leave a comment if you have any suggestions:
And Please follow us on Twitter 
Thank you 😊

Six years after the first iteration of the project, robots can now communicate with each other using a barcode-type system on each side of the block, allowing the modules to identify themselves. The Autonomous Fleet of 16 Blocks can now perform simple tasks or behaviors, such as forming a line or wall, following arrows or a light source.

Inside each modular "M-Block" is a flywheel that rotates at 20,000 rpm using kinetic momentum when the steering wheel is braked. On each edge and each face are permanent magnets allowing two cubes to attach to each other.

Interconnected modular robot swarms: many potential applications

The team envisions powerful applications for inspection and possibly disaster response. Imagine a building in flames where a staircase has disappeared. In the future, you can simply throw M-Blocks on the ground and watch them build a temporary staircase to climb the roof or go down to the basement to rescue the victims.

"'M' means movement, magnetism, and magic, " says Daniela Rus, MIT professor and director of CSAIL. " Movement, because the cubes can move by jumping. Magnetism, because they can connect to others using magnets and, once connected, they can move and connect to form structures. Magic, because we do not see any moving parts and the cube seems to be magically driven . "

Swarms of modular robots could be used in many areas: inspection and rescue, manufacturing, public health, construction, etc. Credits: Jason Dorfman / MIT CSAIL

While the mechanism is quite complex inside, the outside is on the contrary much simpler, allowing more robust connections. Beyond inspection and rescue, researchers also imagine using blocks for tasks such as games, manufacturing and care.

" What's unique in our approach is that it's inexpensive, robust, and potentially easier to fit into millions of modules, " says Romanishin. " M-Blocks can move in a general way. Other robotic systems have much more complicated motion mechanisms, which require many steps, but our system is more scalable . "

A displacement by inertial movement
Previous modular robotic systems typically approach movements using modules with small robotic arms called external actuators. These systems require a lot of coordination, even for the simplest movements, with several commands for a jump.

In 2013, the team developed its mechanism for M-Blocks. They created cubes that move using so-called "inertia forces". This means that, instead of using moving arms, the blocks have a mass inside that they "throw" against the side of the module, causing rotation and movement of the block.

Each module can move in four cardinal directions when it is placed on one of the six faces, giving 24 different directions of movement. Without small arms and appendages protruding from blocks, it's much easier for them to stay safe from damage and avoid collisions.

Optimized coordination via barcode communication

On the communication side, other attempts have involved the use of infrared light or radio waves, which can quickly become clumsy: if many robots in a small area are all trying to send signals to each other, quickly leads to confusion. When a system uses radio signals to communicate, they can interfere with each other when there are multiple radio signals in a small volume.

Romanishin has developed algorithms designed to help robots perform simple tasks, or "behaviors," which has led to the idea of ​​a barcode-like system, where robots can detect identity other blocks to which they are connected.

In one experiment, the team ordered the modules to form a line from a random structure, and checked if they could determine the specific way they were connected to each other. Otherwise, they should choose a direction and "roll" until they finish at the end of the line.

Essentially, the blocks used the connection pattern (the way they were connected to each other) to guide the chosen move - and 90% of the M-Blocks managed to form a line.

This video from MIT introduces the recently developed modular robots:



Source

No comments:

Post a Comment