Your source for the latest research news

Friday, 6 December 2019

Microgravity Brings New Hope For the Cancer Patients

Practical medical examinations of astronauts in recent years have revealed that space travel involves a number of health risks: osteoporosis, reduced lung volume, loss of muscle density, exposure to radiation, and so on. However, conversely, space can also bring unexpected therapeutic solutions. This is what biologists have discovered by observing that, immersed in microgravity, the cancer cells are unable to recognize and assemble, and eventually become neutralized.

Since 2014, Joshua Choi, a biomedical engineering researcher at the University of Technology Sydney, has been studying the effects of microgravity on the physiology and cells of the human body. Early next year, he and his research team will visit the ISS to test a new method of treating cancer based on microgravity.

According to Chou, his research was inspired by a conversation he had with the late Stephen Hawking. During the conversation, Hawking noticed that nothing in the Universe defies gravity. Later, when a friend of Cabbage was diagnosed with cancer, he remembered what Hawking said and began to wonder, " What would happen to cancer cells if we removed them from gravity? ".

Cancer cells accustomed to evolve in a classical gravitational environment

In simple terms, cancer is a disease in which cells begin to divide uncontrollably and spread to certain parts of the body. Cancer cells do this by coming together to form a solid tumor in the body, which then develops until cells invade healthy tissues - such as the heart, lungs, brain, liver, pancreas, etc.

The process by which cancer develops and spreads would seem to indicate that there is a way in which cells are able to detect and gravitate together to form a tumor. However, researchers in biomedicine know that mechanical forces are the only way for cancer cells to detect each other, and that these forces have evolved to operate in a gravitational environment.

Immerse cancer cells in microgravity to block their evolution

This prompted Chou to think of ways in which the absence of gravity could prevent cancer cells from dividing and spreading. He and his team have tested the effects of microgravity on cancer cells in their laboratory. To do this, one of his students created a device that essentially consists of a container the size of a tissue box with a small centrifuge inside.

The researchers used a rotating arm centrifuge to recreate microgravity conditions. Credits: Sascha Kopp et al.

The cells of different cancers are contained in a series of tubes inside the centrifuge, which then rotates them until they experience the sensation of microgravity. As Chou said, the results have been rather encouraging. " Our work has shown that, in a microgravity environment, 80 to 90% of the cells of the four types of cancer tested - ovary, breast, nose and lung - were deactivated and then killed ."

a) Under the effect of microgravity, thyroid cancer cells are forced to rearrange their cytoskeleton. b) Culture of cancer cells under normal conditions; the cancerous tissue formed is dense. c) Cultivation of cancer cells in microgravity; the cancerous tissue formed is loose, porous and weakly bound. Credits: Sascha Kopp et al.

When subjected to microgravity conditions, the cancer cells were unable to detect themselves and therefore had a hard time getting together.

Towards in situ confirmation of results ... And the development of new cancer therapies

The next step, which will take place early next year, will be for the team to send their experience in the ISS aboard a space module specifically designed for this purpose (SpaceX will provide launch services). Chou and his colleagues will spend the duration of the experiment (seven days) in the field, where they will follow the progress of the experiment and will perform live cell imaging via data sources.

Joshua Chou, holding the experimental prototype that will be sent to the ISS next year. Credits: Sissy Reyes

Once the experiment is over, the cells will be frozen for their return trip to Earth. Chou and his colleagues will then examine them to look for genetic modifications. If the results on board the ISS confirm what Chou and his team discovered in the laboratory, he hopes they will be able to develop new treatments that can have the same effect as microgravity and neutralize the ability of cancer cells to to detect oneself.

Ideally, these treatments would not be a cure but could complement existing cancer treatment regimens. Combined with drugs and chemotherapy, treatments derived from this research would effectively slow the spread of cancer in the human body, making conventional treatments more effective and short-lived (and less expensive as well).


1 comment:

  1. Good to read. Cancer patients in India are increasing steadily. The health cost in India is not very expensive which in turn has uplifted medical tourism in this country.