Your source for the latest research news

Saturday, 21 March 2020

Study reveals how long COVID-19 remains infectious on cardboard, metal and plastic


The virus that causes COVID-19 remains for several hours to days on surfaces and in aerosols, a new study published in the New England Journal of Medicine found.

The study suggests that people may acquire the coronavirus through the air and after touching contaminated objects. Scientists discovered the virus is detectable for up to three hours in aerosols, up to four hours on copper, up to 24 hours on cardboard and up to two to three days on plastic and stainless steel.

"This virus is quite transmissible through relatively casual contact, making this pathogen very hard to contain," said James Lloyd-Smith, a co-author of the study and a UCLA professor of ecology and evolutionary biology. "If you're touching items that someone else has recently handled, be aware they could be contaminated and wash your hands."



The study attempted to mimic the virus being deposited onto everyday surfaces in a household or hospital setting by an infected person through coughing or touching objects, for example. The scientists then investigated how long the virus remained infectious on these surfaces.

The study's authors are from UCLA, the National Institutes of Health's National Institute of Allergy and Infectious Diseases, the Centers for Disease Control and Prevention, and Princeton University. They include Amandine Gamble, a UCLA postdoctoral researcher in Lloyd-Smith's laboratory.

As shown in Panel A, the titer of aerosolized viable virus is expressed in 50% tissue-culture infectious dose (TCID50) per liter of air. Viruses were applied to copper, cardboard, stainless steel, and plastic maintained at 21 to 23°C and 40% relative humidity over 7 days. The titer of viable virus is expressed as TCID50 per milliliter of collection medium. All samples were quantified by end-point titration on Vero E6 cells. Plots show the means and standard errors ( bars) across three replicates. As shown in Panel B, regression plots indicate the predicted decay of virus titer over time; the titer is plotted on a logarithmic scale. Points show measured titers and are slightly jittered (i.e., they show small rapid variations in the amplitude or timing of a waveform arising from fluctuations) along the time axis to avoid overplotting. Lines are random draws from the joint posterior distribution of the exponential decay rate (negative of the slope) and intercept (initial virus titer) to show the range of possible decay patterns for each experimental condition. There were 150 lines per panel, including 50 lines from each plotted replicate. As shown in Panel C, violin plots indicate posterior distribution for the half-life of viable virus based on the estimated exponential decay rates of the virus titer. The dots indicate the posterior median estimates, and the black lines indicate a 95% credible interval. Experimental conditions are ordered according to the posterior median half-life of SARS-CoV-2. The dashed lines indicate the limit of detection, which was 3.33×100.5 TCID50 per liter of air for aerosols, 100.5 TCID50 per milliliter of medium for plastic, steel, and cardboard, and 101.5 TCID50 per milliliter of medium for copper.


In February, Lloyd-Smith and colleagues reported in the journal eLife that screening travelers for COVID-19 is not very effective. People infected with the virus -- officially named SARS-CoV-2 -- may be spreading the virus without knowing they have it or before symptoms appear. Lloyd-Smith said the biology and epidemiology of the virus make infection extremely difficult to detect in its early stages because the majority of cases show no symptoms for five days or longer after exposure.

"Many people won't have developed symptoms yet," Lloyd-Smith said. "Based on our earlier analysis of flu pandemic data, many people may not choose to disclose if they do know."

The new study supports guidance from public health professionals to slow the spread of COVID-19:



  • Avoid close contact with people who are sick.

  • Avoid touching your eyes, nose and mouth.

  • Stay home when you are sick.

  • Cover coughs or sneezes with a tissue, and dispose of the tissue in the trash.

  • Clean and disinfect frequently touched objects and surfaces using a household cleaning spray or wipe.


Bibliography:

Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1.

Neeltje van Doremalen, Trenton Bushmaker, Dylan H. Morris, Myndi G. Holbrook, Amandine Gamble, Brandi N. Williamson, Azaibi Tamin, Jennifer L. Harcourt, Natalie J. Thornburg, Susan I. Gerber, James O. Lloyd-Smith, Emmie de Wit, Vincent J. Munster.

New England Journal of Medicine, 2020;

DOI: 10.1056/NEJMc2004973

1 comment:

  1. I am here to give my testimony about chief dr lucky who helped me in my life, i want to inform the public how i was cured from herpes simplex virus by chief dr lucky, i visited different hospital but they gave me list of drugs like Famvir, Zovirax, and Valtrex which is very expensive to treat the symptoms and never cured me. I was browsing through the Internet searching for remedy on herpes and i saw comment of people talking about how chief dr lucky cured them. when i contacted him he gave me hope and send a Herbal medicine to me that i took and it seriously worked for me, am a free person now without problem, my herpes result came out negative. I pray for you chief dr lucky am cured you can also get your self cured my friends if you really need my doctor help, you can reach him now.
    Email: chiefdrlucky@gmail.com  Call or What's App +2348132777335  
    Website :  http://chiefdrluckysolutionhome.website2.me/ 

    ReplyDelete