The newly discovered feature offers insight into the large-scale structure
of our galaxy, which is difficult to study from Earth’s position inside it.
Scientists have spotted a previously unrecognized feature of our Milky Way
galaxy: A contingent of young stars and star-forming gas clouds is sticking
out of one of the Milky Way’s spiral arms like a splinter poking out from a
plank of wood. Stretching some 3,000 light-years, this is the first major
structure identified with an orientation so dramatically different than the
arm’s.
Astronomers have a rough idea of the size and shape of the Milky Way’s arms,
but much remains unknown: They can’t see the full structure of our home
galaxy because Earth is inside it. It’s akin to standing in the middle of
Times Square and trying to draw a map of the island of Manhattan. Could you
measure distances precisely enough to know if two buildings were on the same
block or a few streets apart? And how could you hope to see all the way to
the tip of the island with so many things in your way?
To learn more, the authors of the new study focused on a nearby portion of
one of the galaxy’s arms, called the Sagittarius Arm. Using NASA’s Spitzer
Space Telescope prior to its retirement in January 2020, they sought out
newborn stars, nestled in the gas and dust clouds (called nebulae) where
they form. Spitzer detects infrared light that can penetrate those clouds,
while visible light (the kind human eyes can see) is blocked.
Young stars and nebulae are thought to align closely with the shape of the
arms they reside in. To get a 3D view of the arm segment, the scientists
used the latest data release from the ESA (European Space Agency) Gaia
mission to measure the precise distances to the stars. The combined data
revealed that the long, thin structure associated with the Sagittarius Arm
is made of young stars moving at nearly the same velocity and in the same
direction through space.
“A key property of spiral arms is how tightly they wind around a galaxy,”
said Michael Kuhn, an astrophysicist at Caltech and lead author of the new
paper. This characteristic is measured by the arm’s pitch angle. A circle
has a pitch angle of 0 degrees, and as the spiral becomes more open, the
pitch angle increases. “Most models of the Milky Way suggest that the
Sagittarius Arm forms a spiral that has a pitch angle of about 12 degrees,
but the structure we examined really stands out at an angle of nearly 60
degrees.”
Similar structures – sometimes called spurs or feathers – are commonly found
jutting off the arms of other spiral galaxies. For decades scientists have
wondered whether our Milky Way’s spiral arms are also dotted with these
structures or if they are relatively smooth.
Measuring the Milky Way
The newly discovered feature contains four nebulae known for their
breathtaking beauty: the Eagle Nebula (which contains the Pillars of
Creation), the Omega Nebula, the Trifid Nebula, and the Lagoon Nebula. In
the 1950s, a team of astronomers made rough distance measurements to some of
the stars in these nebulae and were able to infer the existence of the
Sagittarius Arm. Their work provided some of the first evidence of our
galaxy’s spiral structure.
“Distances are among the most difficult things to measure in astronomy,”
said co-author Alberto Krone-Martins, an astrophysicist and lecturer in
informatics at the University of California, Irvine and a member of the Gaia
Data Processing and Analysis Consortium (DPAC). “It is only the recent,
direct distance measurements from Gaia that make the geometry of this new
structure so apparent.”
In the new study, researchers also relied on a catalog of more than a
hundred thousand newborn stars discovered by Spitzer in a survey of the
galaxy called the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire
(GLIMPSE).
“When we put the Gaia and Spitzer data together and finally see this
detailed, three-dimensional map, we can see that there’s quite a bit of
complexity in this region that just hasn’t been apparent before,” said Kuhn.
Astronomers don’t yet fully understand what causes spiral arms to form in
galaxies like ours. Even though we can’t see the Milky Way’s full structure,
the ability to measure the motion of individual stars is useful for
understanding this phenomenon: The stars in the newly discovered structure
likely formed around the same time, in the same general area, and were
uniquely influenced by the forces acting within the galaxy, including
gravity and shear due to the galaxy’s rotation.
“Ultimately, this is a reminder that there are many uncertainties about the
large-scale structure of the Milky Way, and we need to look at the details
if we want to understand that bigger picture,” said one the paper’s
co-authors, Robert Benjamin, an astrophysicist at the University of
Wisconsin-Whitewater and a principal investigator on the GLIMPSE survey.
“This structure is a small piece of the Milky Way, but it could tell us
something significant about the Galaxy as a whole.”
Reference:
“A high pitch angle structure in the Sagittarius Arm” by M. A. Kuhn1, R. A.
Benjamin, C. Zucker, A. Krone-Martins, R. S. de Souza, A. Castro-Ginard, E.
E. O. Ishida, M. S. Povich9 and L. A. Hillenbrand for the COIN
Collaboration, 21 July 2021, Astronomy & Astrophysics.
DOI: 10.1051/0004-6361/202141198
Tags:
Space & Astrophysics