Your source for the latest research news

Showing posts with label Energy. Show all posts
Showing posts with label Energy. Show all posts

Sunday, 15 March 2020

Researchers have found a way to efficiently produce hydrogen using rust and a light source.

Scientists identify a new and efficient way of producing hydrogen from organic waste solution using a catalyst derived from -- of all things -- rust

Production of hydrogen fuel is a key goal towards the development of sustainable energy practices, but this process does not have feasible techniques yet. A team of Japanese scientists from Tokyo University of Science, led by Prof Ken-ichi Katsumata, have identified a novel technique of using rust and light to speed up hydrogen production from organic waste solution, a finding that can revolutionize the clean energy industry.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 😊

In today's narrative of climate change, pollution, and diminishing resources, one fuel could be a game-changer within the energy industry: hydrogen. When burned in a combustion engine or in an electrical power-plant, hydrogen fuel produces only water-making it far cleaner than our current fossil fuels. With no toxic gas production, no contribution to climate change, and no smog, hydrogen may be the answer to a future of cleaner energy, so why is it not more widely used?

There are two reasons for this. First, hydrogen is highly flammable and leaks very easily from storage tanks, causing potential explosion hazards during storage and transport. Second, although pure hydrogen occurs naturally on Earth, it is not found in quantities sufficient for cost-effective utilization. Hydrogen atoms must be extracted from molecules like methane or water, which requires a large amount of energy. Although several techniques exist to produce hydrogen fuel, scientists are yet to make this process "efficient" enough to make hydrogen a commercially competitive fuel on the energy market. Until this is achieved, fossil fuels will probably continue to dominate the industry.

For decades, scientists have been working towards a cheap, efficient, and safe way to produce hydrogen fuel. One of the most promising methods to achieve this is through solar-driven processes, using light to speed up (or "catalyze") the reaction to split water molecules into oxygen and hydrogen gas. In the 1970s, two scientists described the Honda-Fujishima effect, which uses titanium dioxide as a photocatalyst in hydrogen production. Building on this research, a team of Japanese researchers led by Prof Ken-ichi Katsumata of Tokyo University of Science, sought to use a cheaper, more readily available semiconductor catalyst for this reaction, with the hope to increase its efficiency even further, reducing the production costs and safety of hydrogen fuel. Their study published in Chemistry: A European Journal indicates that, by using a form of rust called α-FeOOH, hydrogen production under Hg-Xe lamp irradiation can be 25 times higher than titanium dioxide catalyst under the same light.

The experiment conducted by Prof Katsumata and colleagues aimed to address common challenges encountered in using semiconductor catalysts in solar-driven hydrogen production. There are three major obstacles described by the authors. The first is the need for the catalyst material to be suitable for the use of light energy. The second is that most photocatalysts currently used require rare or "noble" metals as cocatalysts, which are expensive and difficult to obtain. The last problem arises from the actual production of hydrogen and oxygen gases. If not separated straight away, the mixture of these two gases can at best reduce the hydrogen fuel output, and at worst, cause an explosion. Therefore, they aimed to find a solution that can not only increase the reaction's efficiency, but also successfully prevent hydrogen and oxygen from re-coupling and creating a potential hazard.

The team identified a promising candidate catalyst in α-FeOOH (or rust) and set out an experiment to evaluate its efficiency for hydrogen production and the optimal experimental conditions for its activation. "We were really surprised at the generation of hydrogen using this catalyst," states Prof Katsumata, "because most of the iron oxides are not known to reduce to hydrogen. Subsequently, we searched for the condition for activating α-FeOOH and found that oxygen was an indispensable factor, which was the second surprise because many studies showed that oxygen suppresses hydrogen production by capturing the excited electrons." The team confirmed the production mechanism of hydrogen from water-methanol solution using a 'gas-chromatography-mass-spectrometry' method, showing that α-FeOOH was 25 times more active than the titanium dioxide catalyst used in previous research, supporting stable hydrogen production for more than 400 hours!

More research will be required to optimize this process. Prof Katsumata elaborates: "The specific function of the oxygen in activating light-induced α-FeOOH has not been unveiled yet. Therefore, exploring the mechanism is the next challenge." For now, these findings of Katsumata and his colleagues represent new advancements in the production of a clean, zero-emissions energy source that will be central to the sustainable societies of the future!


Hydrogen Production System by Light‐Induced α‐FeOOH Coupled with Photoreduction.

Tetsuya Yamada, Norihiro Suzuki, Kazuya Nakata, Chiaki Terashima, Nobuhiro Matsushita, Kiyoshi Okada, Akira Fujishima, Ken‐ichi Katsumata.

Chemistry – A European Journal, 2020;

DOI: 10.1002/chem.201903642

Sunday, 23 February 2020

New material doubles the battery life of electric vehicles

The anodes currently constituting most energy storage systems are made from graphite. However, this material is not the most optimal for ensuring long-term storage and stability during the many charge / discharge cycles. The alternative is silicon, a much more effective material, but suffering from certain defects preventing its commercialization. Recently, a team of Korean researchers has developed a series of very simple procedures using corn starch, making it possible to correct these defects and opening the way for a massive use of silicon in future batteries.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 😊

Hun-Gi Jung and his research team at the Center for Energy Storage Research at the Korean Institute of Science and Technology (KIST) announced the development of silicon anodes that can quadruple the capacity of a battery, compared to graphite anode materials, and which allow rapid charging to over 80% of capacity in just five minutes. When applied to electric vehicle batteries, the new materials are expected to more than double their range.

The batteries currently installed in standard electric vehicles use graphite materials, but their low capacity contributes to the fact that electric vehicles have a shorter range than vehicles with internal combustion engines. Consequently, silicon, with an energy storage capacity 10 times greater than graphite, has attracted attention as a new generation material for the development of long-range electric vehicles.

Improving silicon capabilities with carbon-silicon composites

However, the silicon materials have not yet been marketed because their volume increases rapidly and the storage capacity decreases considerably during the charge and discharge cycles, which limits marketing. A number of methods have been suggested to improve the stability of silicon as an anode material, but the cost and complexity of these methods have prevented silicon from replacing graphite.

To improve the stability of silicon, Jung and his team focused on the use of common materials in our daily lives, such as water, oil and starch. They dissolved starch and silicon in water and oil, respectively, and then mixed and heated them in order to produce carbon-silicon composites. A simple thermal process used for frying food was employed to firmly fix the carbon and silicon, preventing the silicon anode materials from expanding during charge and discharge cycles.

Higher performance than graphite anodes
The composite materials developed by the research team demonstrated a capacity four-times greater than that of graphite anode materials (360mAh/g - 1,530mAh/g) and stable capacity retention over 500 cycles. It was also found that the materials enable batteries to charge to more than 80% capacity in only five minutes.  The results were published in the journal Nano Letters.

Structure and properties of the carbon-silicon hybrid developed by the researchers. Credits: Hyun Jung Kwon et al. 2020

Carbon spheres prevent the usual volume expansion of silicon, thereby enhancing the stability of silicon materials. Also, the use of highly conductive carbon and the rearrangement of the silicon structure resulted in a high output.

"We were able to develop carbon-silicon composite materials using common, everyday materials and simple mixing and thermal processes with no reactors," said Dr. Jung, the lead researcher of the KIST team. He continued, "The simple processes we adopted and the composites with excellent properties that we developed are highly likely to be commercialized and mass-produced. The composites could be applied to lithium-ion batteries for electric vehicles and energy storage systems (ESSs)."


Nano/Microstructured Silicon–Carbon Hybrid Composite Particles Fabricated with Corn Starch Biowaste as Anode Materials for Li-Ion Batteries

Hyun Jung KwonJang-Yeon HwangHyeon-Ji ShinMin-Gi JeongKyung Yoon ChungYang-Kook Sun, Hun-Gi Jung

Nano Lett. 2020, 20, 1, 625-635
Publication Date:December 11, 2019

Wednesday, 19 February 2020

New device generates electricity from moisture in the air

In the race for renewable energies, engineers are redoubling their inventiveness to find and exploit the energies freely available from the environment. But sometimes it's nature itself that gives scientists a boost. This is particularly the case of a very specific bacterium, Geobacter sulfurreducens, whose bacterial nanowires naturally conduct electricity. And researchers used these nanowires to create a device that generates electricity from the humidity of the air.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 😊

This unusual bacterium, belonging to the genus Geobacter, was first spotted for its ability to produce magnetite in the absence of oxygen, but over time scientists discovered that it could also make other things, like bacterial nanowires that conduct electricity.

For years, researchers have tried to find ways to use this natural gift usefully. And they recently did it with a device called Air-gen.

According to the team, their device can generate electricity from practically nothing. “We literally generate electricity from the air. Air-gen generates clean energy 24/7,” said Jun Yao, electrical engineer at the University of Massachusetts. The study was published in the journal Nature.

Generate electricity via air humidity thanks to nanowires from G. sulfurreducens

The claim may seem exaggerated, but a new study by Yao and his team describes how the generator can indeed create electricity with nothing but the presence of air around it. All this thanks to the nanowires of electrically conductive proteins produced by Geobacter ( G. sulfurreducens, in this case).

The Air-gen consists of a thin film of protein nanowires measuring only 7 micrometers thick, positioned between two electrodes, but also exposed to air.

(A) Bacterial nanowires and generator structure. (B, C, D) Properties of the output voltage. Credits: Xiaomeng Liu et al. 2020

Due to this exposure, the nanowire film is capable of absorbing water vapor present in the atmosphere, allowing the device to generate a direct electric current conducted between the two electrodes. The team says the charge is likely created by a humidity gradient that causes protons to diffuse into the nanowire material.

"This diffusion of charges should induce an electric field of counterweight or a potential similar to that of membranes at rest in biological systems. A maintained humidity gradient, which is fundamentally different from anything seen in previous systems, explains the continuous output voltage of our nanowire device.”

Hydroelectric production more efficient than graphene

The discovery was made almost by accident, when Yao noticed that the devices he was experimenting with were conducting electricity apparently on their own. “I saw that when the nanowires were in contact with electrodes in a specific way, the devices generated a current. I found that exposure to atmospheric humidity was essential and that protein nanowires absorb water, producing a voltage gradient across the device.”

Properties of the voltage supplied by the generator. The generation of 0.5 V continuously allows powering small electronic devices. Credits: Xiaomeng Liu et al. 2020

Previous research has demonstrated the production of hydroelectric power using other types of nanomaterials - such as graphene, but these attempts have largely produced only short bursts of electricity, lasting only a few seconds. In contrast, the Air-gen produces a sustained voltage of approximately 0.5 V, with a current density of approximately 17 microamps per square centimeter.

Towards large-scale energy production

It doesn't take a lot of energy, but the team says connecting multiple devices could generate enough to charge small devices like smartphones and other personal electronics - all without wasting and using only ambient humidity (even in regions as dry as the Sahara Desert).

“The ultimate goal is to build systems on a large scale. Once we reach an industrial scale for the production of nanowires, I expect we will be able to build large generation systems that will make a major contribution to sustainable energy production," said Yao, explaining that the efforts future could use the technology to power homes via nanowires embedded in the mural.

If there is one obstacle to realizing this seemingly incredible potential, it is the limited amount of nanowires produced by G. sulfurreducens. Related research from one of the teams - microbiologist Derek Lovley, who first identified Geobacter bacteria in the 1980s - may have a solution: genetically designing other bacteria, such as E. coli, to perform the same process in larger proportions.


Power generation from ambient humidity using protein nanowires.

Xiaomeng Liu, Hongyan Gao, Joy E. Ward, Xiaorong Liu, Bing Yin, Tianda Fu, Jianhan Chen, Derek R. Lovley, Jun Yao.

Nature, 2020;

DOI: 10.1038/s41586-020-2010-9

Friday, 14 February 2020

Movement of a liquid droplet on MoS2 generates over 5 volts of electricity

Japanese scientists have developed an energy capture device that generates more than 5 volts of electricity from a single drop of liquid rolling downhill. It was already known that a sheet of graphene can generate electricity from the movement of a liquid on its surface. However, the output voltage is limited to about 0.1 volts, which is not enough to drive electronic devices.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 😊

The result was much better using molybdenite , or molybdenum disulfide (MoS2), as the active material in the nanogenerator, allowing to reach just over 5 volts of electricity from a drop of liquid rolling over the surface of the thin and flexible material - molybdenite is one of the stars of ultrafine electronics , surpassing graphene in several ways.

This voltage is important because it is at the level required for any electronic circuit, but the current generated by a single drop is also miniscule, with peaks of six nanowatts, which directs the nanogenerator for applications where there are continuous flows of liquids.

"To use MoS2 for the generator, it was necessary to form a large-area single-layer MoS2 film on a plastic film. With conventional methods, however, it was difficult to grow MoS2 uniformly on a large-area substrate," says Professor Ohno of the Institute of Materials and Systems for Sustainability at Nagoya University. "In our study, we succeeded in fabricating this form of MoS2 film by means of chemical vapor deposition using a sapphire substrate with molybdenum oxide (MoO3) and sulphur powders. We also used a polystyrene film as a bearing material for the MoS2 film, so that we were able to transfer the synthesized MoS2 film to the surface of the plastic film quite easily."

Harvesting Energy

The harvest of energy , incorporated in nanogenerators capable of transforming small amounts of naturally occurring energy (by light, heat and vibration) into electricity, is gaining attention as a method to power the Internet of Things (IoT) devices.

This technology is expected to have applications, for example, in autonomous and self-powered sensors, which will be able to work continuously without any concern with power or battery change.

The newly developed generator is flexible enough to be installed on the curved inner surface of plumbing, and is thus expected to be used to power IoT devices used in liquids, such as self-powered rain gauges and acid rain monitors, as well as water quality sensors that can generate power from industrial wastewater while monitoring it.

Professor Ohno says, "Our MoS2 nanogenerator is able to harvest energy from multiple forms of liquid motion, including droplets, spraying, and sea waves. From a broader perspective, this device could also be used in applications involving hydrodynamics, such as generating electricity from rainwater and waterfalls."


Article: High output voltage generation of over 5 V from liquid motion on single-layer MoS2

Authors: Adha Sukma Aji, Ryohei Nishi, Hiroki Ago, Yutaka Ohno

Magazine: Nano Energy

Vol .: 68, 104370

DOI: 10.1016 / j. nanoen.2019.104370

Tuesday, 11 February 2020

New Electricity generator powers 100 small LED bulbs with a single drop of water

City University HK

Liquid water is omnipresent on Earth, from rivers to oceans through rain. However, the energy potential it contains is still insufficiently exploited. Recently, a team of Chinese engineers has developed a new method capable of harnessing the kinetic energy of water movements, such as falling raindrops, and converting it into electricity. A single drop of rain could thus power 100 LED bulbs.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 😊

A single drop of rain can now power 100 small LED bulbs, setting a new milestone for energy generation technologies. The droplet-based electricity generator developed has a high energy conversion efficiency and a power density a thousand times greater than its counterparts. The study was published in the journal Nature .

The developers hope the technology will help tackle the global energy crisis by providing new ways to use the environmental energy that surrounds us in water and rain. The generator could be used in a variety of contexts where water meets a solid surface - such as on boat hulls, along coasts and even above shelters or umbrellas.

“Our research shows that a drop of 100 microliters of water released from a height of 15 centimeters can generate a voltage of more than 140 volts. The power generated can light up 100 small LED bulbs,” said Zuankai Wang, engineer at City University of Hong Kong.

Limited current hydroelectric technologies

Although the concept of hydroelectricity is not new - hydroelectric dams and tidal power plants operate around the world, the limitations of current technology have prevented us from taking full advantage of the available energy from waves and raindrops. This power is in the form of low frequency kinetic energy. “The kinetic energy caused by waterfalls is due to gravity and can be considered free and renewable. It should be used better.”

Conventional droplet energy generators take advantage of the triboelectric effect, in which electricity is generated when certain materials come into contact with each other, friction causing them to exchange electrons . Unfortunately, the size of the charge that can be generated on such surfaces is generally very limited, leading to very low energy conversion efficiency. The researchers' new energy recovery method overcomes these limitations in two different ways.

Optimized electricity generation thanks to polytetrafluoroethylene

First, the team used a material called polytetrafluoroethylene (or PTFE), which has an almost permanent electrical charge. They found that when drops hit the PTFE, the charges on its surface gradually accumulated until reaching a saturation point - which allowed them to overcome the bottleneck presented by the previous approaches, which could not accumulate only small charges.

(Left): the technology uses the kinetic energy generated by the drop of the drops on the electrodes in order to generate electricity. (Right): diagram of the structure of the PTFE-based device. Credits: City University HK

The second characteristic of the new method is its resemblance to a field effect transistor - a basic element of modern electronics and for which the 1956 Nobel Prize in physics was awarded. The design of the power generator includes two electrodes - one made of aluminum, the other made of tin and indium oxide with a PTFE coating, on which the charge is generated.

Many potential applications

When droplets fall on this last surface, they connect the two electrodes, transforming the original configuration into an electric circuit in a closed loop, releasing the stored charge and generating an electric current to power the LEDs. The researchers also found that the technique is not affected by lower relative humidities - and that it works with both rainwater and seawater.

According to the researchers, the concept could be used on various surfaces where liquids come into contact with solids, to fully exploit the low frequency kinetic energy that can be found in water. Professor Wang said he hopes the technology will help harvest energy from water to tackle the global problem of renewable energy shortages. Researchers have patented their technology in the United States and mainland China.


Article: A droplet-based electricity generator with high instantaneous power density.

Authors: Wanghuai Xu, Huanxi Zheng, Yuan Liu, Xiaofeng Zhou, Chao Zhang, Yuxin Song, Xu Deng, Michael Leung, Zhengbao Yang, Ronald X. Xu, Zhong Lin Wang, Xiao Cheng Zeng & Zuankai Wang

Nature (2020).

About us

we are bunch of Guys who Love Science and Technology, we are aware that our site looks junk but we don't have enough money to make our website much better,Your support will keep us growing, Please keep Sharing and join us on facebook and twitter. Thank you for reading our articles, Please leave comments if you feel anything, Have a Nice Life