Please Join Us On Facebook and Twitter

Sunday, 8 December 2019

Plants emit sounds when stressed



At first considered more or less inert by science, plants have in fact turned out to be very dynamic entities that can detect and interact with their environment as animals do. After showing that plants can communicate with each other using a universal chemical language, and even travel short distances, researchers have recently discovered that they are also capable of producing sounds in response to different types of stress.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 馃槉

Although it has been revealed in recent years that plants are able to see, hear and smell, they are still considered silent. But, for the first time, they were recorded producing sounds when stressed, which researchers say could open a new field for precision farming, where farmers would listen to crops lacking water or nutrients.



Itzhak Khait and colleagues at Israel's Tel Aviv University discovered that tomato and tobacco plants emit sounds when they are stressed by lack of water or when their stems are cut off at frequencies that humans can not hear. Microphones placed 10 centimeters from the plants received sounds in the ultrasonic range of 20 to 100 kilohertz, which insects and some mammals would be able to hear and detect within 5 meters.

Researchers even suggest that butterflies may not lay their eggs on a plant that seems stressed by lack of water. Plants could even hear that others lack water, and react accordingly. Previously, devices were installed on plants to record the vibrations caused by the formation and explosion of air bubbles - a process known as cavitation - inside xylem tubes used for transporting 'water.

Sounds produced in response to different types of stress

But this new study is the first to record plant sounds emitted from a distance. On average, drought-stressed tomato plants emitted 35 sounds per hour, while tobacco plants produced 11. When plant stems were cut, tomato plants averaged 25 sounds per hour. and those of tobacco 15. Unstressed plants produced less than one noise per hour, on average.

a) Experimental protocol used by the researchers. b), c) and d): Amplitudes and number of sounds emitted by tobacco plants and tomatoes lacking water or cut. Credits: I. Khait et al. 2019

It is even possible to distinguish the sounds to know what is the source of the stress. Researchers conducted a deep-learning algorithm to distinguish between plant sounds and wind, rain, and other noise from the greenhouse, correctly identifying in most cases whether the stress was due to drought or at a break, depending on the intensity and frequency of the sound. Tobacco stressed by lack of water seems to produce louder sounds than cut tobacco, for example.

Depending on the frequency and intensity of the sounds emitted, it is possible to identify the plant species and the stress they experience. Credits: I. Khait et al. 2019

Although Khait and his colleagues are only interested in tomato and tobacco plants, they think that other plants can also make sounds when stressed. In a preliminary study, they also recorded ultrasonic sounds from a cactus ( Mammillaria spinosissima ) and amoxicillam ( Lamium amplexicaule ). Cavitation is a possible explanation of how plants generate sounds.

Better understanding plant stress: towards micro-controlled agriculture?

Enabling farmers to listen to water stressed plants could "open a new path in the field of precision agriculture," the researchers suggest. They add that such capacity will become increasingly important as climate change exposes more areas to drought.

The authors warn that the results can not yet be extended to other stresses, such as salt or temperature, as they do not lead to sounds. In addition, no experiment was conducted to show whether a butterfly or any other animal could hear and respond to the sounds emitted by the plants. This idea remains hypothetical, for the moment.

If plants emit sounds when stressed, cavitation is the most likely mechanism, says Edward Farmer of the University of Lausanne, Switzerland. But he is skeptical about the results and would like to see more controls, such as the sounds of a soil that dries without plants.



Note: This is Still an experimental research which yet needs to be published in valid journal, this article is taken from review Journal

Source

Saturday, 7 December 2019

Quantum light processors are demonstrated in practice

Interlaced 3D light beams allow for quantum operations at room temperature and macro scale

Optical quantum processor


Two international teams, working separately, built prototypes of quantum processors made of light.

Qubits formed by intertwining laser beams are expected to make quantum computers less error prone and allow scalability, that is, scaling up processors to a large number of qubits.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 馃槉

"While today's quantum processors are impressive, it's unclear whether today's designs can scale to extremely large sizes. Our approach starts with extreme scalability - built in from the start - because the processor, called a cluster state, is made of light. , "said Professor Nicolas Menicucci of RMIT University in Australia and leader of one of the teams.

A cluster state is a large collection of intertwined quantum components that perform quantum calculations when measured in a specific way - all operating at macroscopic scale using normal photonic components.



Both teams met the two fundamental requirements for cluster state operation, which comprise a minimum amount of qubits and quantum entanglement in the proper structure for their use in computational calculations.

To this end, specially designed crystals convert common laser light into a type of quantum light called compressed light , which is woven into a cluster state by a network of mirrors, light splitters, and optical fibers.

While the light compression levels achieved so far - which are a measure of photonic processor quality - are too low to solve practical problems, the design is compatible with approaches to achieving next-generation compression levels.

"Our experiment demonstrates that this design is workable - and scalable," said Professor Hidehiro Yonezawa of the University of New South Wales.

Animation showing the temporal evolution of the cluster state generation scheme

Quantum processor at room temperature


Mikkel Larsen and his colleagues at the Technical University of Denmark prefer to call his optical quantum processor prototype a "light carpet."

This is because, instead of the threads of an ordinary carpet, the processor is in fact a carefully crafted web of thousands of intertwined pulses of light.

"Unlike traditional cluster states, we use the temporal degree of freedom to achieve a two-dimensional interlaced network of 30,000 light pulses. The experimental setup is really surprisingly simple. Most of the effort has gone into developing the idea of ​​state generation. cluster, "said Larsen.

The Danish team has also been able to make its light carpet handle quantum entanglement at room temperature, noting that, in addition to error correction and simplification of technology, quantum optical processors can be cheaper and more powerful as they will allow the rapid increase in the number of qubits.

An optical quantum computer, therefore, does not require the expensive and complicated cooling technology used by superconducting qubits. At the same time, light-based qubits, which carry information in laser light, hold the information longer and can transmit it over long distances.



"By distributing the state of the cluster generated in space and time, an optical quantum computer can also scale more easily to contain hundreds of qubits. This makes it a potential candidate for the next generation of larger and more powerful quantum computers," reinforced Professor Ulrik Andersen.


Bibliography:

Article: Generation of time-domain-multiplexed two-dimensional cluster state
Authors: Warit Asavanant, Yu Shiozawa, Shota Yokoyama, Baramee Charoensombutamon, Hiroki Emura, Rafael N. Alexander, Shuntaro Takeda, Jun-Ichi Yoshikawa, Nicolas C. Menicucci , Hidehiro Yonezawa, Akira Furusawa
Magazine: Science
Vol. 373-376
DOI: 10.1126 / science.aay2645

Article: Deterministic generation of a two-dimensional cluster state
Authors: Mikkel V. Larsen, Xueshi Guo, Casper R. Breum, Jonas S. Neergaard-Nielsen, Ulrik L. Andersen
Journal: Science
Vol. 366, Issue 6463, p. 369-372
DOI: 10.1126 / science.aay4354

Friday, 6 December 2019

Microgravity Brings New Hope For the Cancer Patients



Practical medical examinations of astronauts in recent years have revealed that space travel involves a number of health risks: osteoporosis, reduced lung volume, loss of muscle density, exposure to radiation, and so on. However, conversely, space can also bring unexpected therapeutic solutions. This is what biologists have discovered by observing that, immersed in microgravity, the cancer cells are unable to recognize and assemble, and eventually become neutralized.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 馃槉

Since 2014, Joshua Choi, a biomedical engineering researcher at the University of Technology Sydney, has been studying the effects of microgravity on the physiology and cells of the human body. Early next year, he and his research team will visit the ISS to test a new method of treating cancer based on microgravity.

According to Chou, his research was inspired by a conversation he had with the late Stephen Hawking. During the conversation, Hawking noticed that nothing in the Universe defies gravity. Later, when a friend of Cabbage was diagnosed with cancer, he remembered what Hawking said and began to wonder, " What would happen to cancer cells if we removed them from gravity? ".


Cancer cells accustomed to evolve in a classical gravitational environment

In simple terms, cancer is a disease in which cells begin to divide uncontrollably and spread to certain parts of the body. Cancer cells do this by coming together to form a solid tumor in the body, which then develops until cells invade healthy tissues - such as the heart, lungs, brain, liver, pancreas, etc.

The process by which cancer develops and spreads would seem to indicate that there is a way in which cells are able to detect and gravitate together to form a tumor. However, researchers in biomedicine know that mechanical forces are the only way for cancer cells to detect each other, and that these forces have evolved to operate in a gravitational environment.

Immerse cancer cells in microgravity to block their evolution

This prompted Chou to think of ways in which the absence of gravity could prevent cancer cells from dividing and spreading. He and his team have tested the effects of microgravity on cancer cells in their laboratory. To do this, one of his students created a device that essentially consists of a container the size of a tissue box with a small centrifuge inside.

The researchers used a rotating arm centrifuge to recreate microgravity conditions. Credits: Sascha Kopp et al.

The cells of different cancers are contained in a series of tubes inside the centrifuge, which then rotates them until they experience the sensation of microgravity. As Chou said, the results have been rather encouraging. " Our work has shown that, in a microgravity environment, 80 to 90% of the cells of the four types of cancer tested - ovary, breast, nose and lung - were deactivated and then killed ."

a) Under the effect of microgravity, thyroid cancer cells are forced to rearrange their cytoskeleton. b) Culture of cancer cells under normal conditions; the cancerous tissue formed is dense. c) Cultivation of cancer cells in microgravity; the cancerous tissue formed is loose, porous and weakly bound. Credits: Sascha Kopp et al.

When subjected to microgravity conditions, the cancer cells were unable to detect themselves and therefore had a hard time getting together.

Towards in situ confirmation of results ... And the development of new cancer therapies

The next step, which will take place early next year, will be for the team to send their experience in the ISS aboard a space module specifically designed for this purpose (SpaceX will provide launch services). Chou and his colleagues will spend the duration of the experiment (seven days) in the field, where they will follow the progress of the experiment and will perform live cell imaging via data sources.

Joshua Chou, holding the experimental prototype that will be sent to the ISS next year. Credits: Sissy Reyes

Once the experiment is over, the cells will be frozen for their return trip to Earth. Chou and his colleagues will then examine them to look for genetic modifications. If the results on board the ISS confirm what Chou and his team discovered in the laboratory, he hopes they will be able to develop new treatments that can have the same effect as microgravity and neutralize the ability of cancer cells to to detect oneself.

Ideally, these treatments would not be a cure but could complement existing cancer treatment regimens. Combined with drugs and chemotherapy, treatments derived from this research would effectively slow the spread of cancer in the human body, making conventional treatments more effective and short-lived (and less expensive as well).



Source

Researchers has developed the artificial brain cells

The chip in the center (the small green square) contains 120 artificial neurons. | University of Bath

The field of electronic circuits inspired by the brain has made a big leap forward. For the first time ever, researchers have been able to decode the complex behaviors of brain cells in order to recreate them in tiny computer chips. They demonstrated that a piece of silicon could behave exactly like a biological neuron.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 馃槉

These tiny neurons may well change the way we design and build medical devices because they reproduce healthy biological activity, but only require one billionth of the energy needed by microprocessors.



It should be known that neurons behave in the same way as the electrical circuits of the body, but their behavior is less predictable, especially as regards the analysis of the relationship between their electrical input and output pulses. But these new artificial brain cells successfully mimic the behavior of rat neurons in two specific regions of the brain.

Professor Alain Nogaret (left) and research associate Kamal Abu Hassan (right) in the University of Bath laboratory. Credits: University of Bath

"Until now, the neurons looked like black boxes, but we managed to open them and examine the inside, " said Bath physicist Alain Nogaret. "  Our work is changing paradigms because it provides a robust method for reproducing the electrical properties of real neurons in great detail,  " he added.

For scientists, the ultimate goal is to use these neurons to design medical devices that are better adapted to patient needs, such as a smarter pacemaker, able to respond to new stressors and the demands of the person's heart. which essentially consists in improving the devices to better adapt them to the body.

Julian Paton, a physiologist at the Universities of Auckland and Bristol, said in his press release that recreating a biological activity was an interesting challenge because it "would offer tremendous opportunities for smarter medical devices that lead to personalized medicine approaches. for a range of diseases and disabilities.



In their work published in Nature Communications (see link below), researchers accurately reproduced the complete dynamics of hippocampal neurons and rat respiratory neurons.


Bibliography:

Optimal solid state neurons

Kamal Abu-Hassan, Joseph D. Taylor, Paul G. Morris, Elisa Donati, Zuner A. Bortolotto, Giacomo Indiveri, Julian F. R. Paton & Alain

Nature Communications volume 10, Article number: 5309 (2019)

https://doi.org/10.1038/s41467-019-13177-3

Thursday, 5 December 2019

Researchers identify the protein that controls the self-renewal of blood stem cells


Blood cells - red blood cells, white blood cells and platelets - are all initially derived from hematopoietic stem cells (HSCs). During hematopoiesis, these multipotent stem cells then differentiate into several progenitors that will give the final blood cells. In many blood disorders, bone marrow disorders can significantly reduce the production of HSC. But recently, researchers have discovered a protein mechanism that allows HSCs to self-renew, opening the door to new therapeutic solutions.

UCLA scientists have discovered a link between a protein and the ability of human blood stem cells to self-renew. In a study published in the journal Nature , the team reports that the activation of the protein causes the automatic renewal of blood stem cells at least twelve times under laboratory conditions.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 馃槉

The multiplication of blood stem cells in conditions outside the human body could dramatically improve treatment options for blood cancers such as leukemia and for many inherited blood diseases. Blood stem cells, also known as hematopoietic stem cells, are found in the bone marrow where they are renewed and differentiated to create all types of blood cells.

Overcome rejection problems in bone marrow transplants

Bone marrow transplants have been used for decades to treat people suffering from certain diseases of the blood or immune system. However, they have significant limitations: it is not always possible to find a donor compatible with bone marrow, the immune system of the patient may reject foreign cells and the number of transplanted stem cells may not be sufficient to effectively treat disease.

In many blood diseases, bone marrow is reached, impacting the renewal of hematopoietic stem cells. Grafts are therefore performed, with risks of rejection generally high. Credits: Sophie Jacopin

When blood stem cells are removed from the bone marrow and placed in lab boxes, they quickly lose their ability to self-renew and they die or differentiate into other types of blood cells. Mikkola's goal of allowing the automatic renewal of blood stem cells under controlled laboratory conditions would open up many new possibilities for the treatment of many blood diseases, including the safer genetic engineering of blood stem cells. patients.


MLLT3: a gene involved in the renewal of blood stem cells

It could also allow scientists to produce blood stem cells from pluripotent stem cells, which can create any type of cell in the body. In the lab, researchers analyzed genes that go out when human blood stem cells lose their ability to self-renew, noting genes that are turned off when blood stem cells differentiate into specific blood cells, such as white or red blood cells.

They then placed the blood stem cells in lab boxes and observed which genes were inactivated. Using pluripotent stem cells, they made cells resembling blood stem cells that were unable to renew themselves and monitored which genes were not activated.

They found that the expression of a gene called MLLT3 was closely related to the potential for self-renewal of blood stem cells and that the protein generated by the MLLT3 gene gave the blood stem cells the necessary instructions to maintain its ability to self-renew. To do this, he collaborates with other regulatory proteins to ensure that important parts of the blood stem cell machinery remain operational during cell division.

A higher multiplication of HSCs thanks to the MLLT3 gene

The researchers wondered whether maintaining the level of MLLT3 protein in blood stem cells in lab boxes would be enough to improve their self-renewing abilities. Using a viral vector - a specially modified virus, capable of transmitting genetic information to the nucleus of a cell without causing disease - the team inserted an active gene MLLT3 into blood stem cells and observed that blood stem cells functional were able to multiply at least twelve times more.

The researchers found that activation of the MLLT3 (orange) gene allowed for greater turnover of hematopoietic stem cells. Credits: CurioCity

Other recent studies have identified small molecules - organic compounds often used to create pharmaceutical drugs - that help multiply stem cells from human blood in the laboratory. When Mikkola's team used these small molecules, she found that self-renewal of the blood stem cells generally improved, but that the cells could not maintain the appropriate MLLT3 levels and that they did not function properly. not as well when transplanted to mice.

Self-renewal of blood stem cells without side effects

Importantly, MLLT3 has allowed blood stem cells to self-renew at a reasonable pace; they have not acquired any dangerous characteristics such as excessive multiplication or mutation and the production of abnormal cells that can lead to leukemia.

The next steps for the researchers are to determine which proteins and which elements of the blood stem cell DNA influence the on-off switch for MLLT3, and how this can be controlled using the ingredients contained in the boxes. laboratory. With this information, they could eventually find ways to turn on and turn off MLLT3 without using a viral vector, which would be safer for use in a clinical setting.




Bibliography:

MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment

Vincenzo Calvanese, Andrew T. Nguyen, Hanna K. A. Mikkola

Nature (2019)

https://doi.org/10.1038/s41586-019-1790-2

Wednesday, 4 December 2019

Chemists trigger the coldest chemical reaction ever


Chemical reactions are extremely fast processes, involving complex and successive molecular interactions. Until now, researchers could only observe the beginning and end phases of a chemical reaction, without being able to observe the course of the reaction itself. Recently, however, chemists at Harvard University have been able to cool molecules to such a low temperature that they have been slowed down to the point where researchers have the opportunity to observe the chemical reaction in detail. A feat that could pave the way for new technologies, from civil engineering to quantum computing.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 馃槉

It's 500 nanokelvins, a few millionths of a degree above absolute zero. The icy nature of this configuration is important because at these temperatures, molecules tend to slow down to the point of almost stopping. For a chemical reaction to occur, slow molecules are usually not indicated.



But in this case, the reduction in temperature and speed gave the team led by Harvard University the opportunity to see something that had never been observed before: the moment when two molecules meet and form two new molecules. The results were published in the journal Science .

Slow down molecules to see their reaction in detail

The chemical reactions take only one picosecond, which makes it very difficult to observe what happens during this period of time. Even ultra-fast lasers acting as cameras can usually capture the beginning and the end of a reaction, but not what happens in the middle. Slowing the reaction through extremely cold temperatures obtained by the team was therefore the ideal solution.

The coldest temperature in the universe is absolute zero, a temperature that is experimentally impossible to reach. But it is possible to seriously approach it. Ultra-low temperatures mean very low energies, and therefore a much slower reaction: two rubidium potassium molecules chosen for their plasticity have been delayed during the reaction phase for a few microseconds.

Chemical reactions convert reagents into products via an intermediate state where bonds break and form. Often too short to be observed, this phase has so far escaped detailed observation. By "freezing" the rotation, the vibration and the movement of the reagents (here potassium-rubidium molecules) at a temperature of 500 nanokelvin (temperature barely higher than the temperature of absolute zero), the number of energetic states allowed for the products is limited. "Trapped" in the intermediate phase longer, researchers can then observe this phase directly with photoionization detection. Credits: Ming-Guang Hu

A technique known as photoionization detection was then used to observe what was happening between the two molecules, providing researchers with valuable real data to inform their models and assumptions. Being able to observe chemical reactions so closely and at such a fundamental level opens up the possibility of designing new reactions as well; an almost limitless number of combinations is imaginable, potentially useful in all areas, from material construction to quantum computing.


Bibliography:

Direct observation of bimolecular reactions of ultracold KRb molecules

M.-G. Hu, Y. Liu, D. D. Grimes, Y.-W. Lin, A. H. Gheorghe2, R. Vexiau4, N. Bouloufa-Maafa4, O. Dulieu4, T. Rosenband2, K.-K. Ni,

Science  29 Nov 2019:
Vol. 366, Issue 6469, pp. 1111-1115
DOI: 10.1126/science.aay9531

If they exist, cosmic strings would be much harder to detect than expected


Following the Big Bang, the Universe has undergone several phase transitions that have resulted in broken symmetry of the physical laws. According to some cosmological models, some of these breaks in symmetry would have resulted in the formation of particular cosmic structures at the meeting point of unstable regions of the Universe; these structures are called topological defects, and cosmic strings are one of them. Cosmologists initially thought that signatures of these linear energy structures could be detected in the cosmic microwave background. However, recently, physicists have shown that these signatures would be too weak for their detection to be possible.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 馃槉

Cosmic strings are hard to imagine, according to Oscar Hern谩ndez, a physicist at McGill University in Montreal. " Have you ever walked on a frozen lake? Have you noticed any cracks in the ice? It's still pretty solid, but cracked, "he says. These cracks are formed by a phase transition process similar to that of cosmic strings.


Topological defects predicted by physics beyond the Standard Model

Imperfect meeting points on the surface of a frozen lake form long cracks. In the structure where space and time intersect, they form cosmic strings, if the underlying physics is correct.

Researchers believe that in space, some fields determine the behavior of forces and fundamental particles. The first transition phases of the Universe gave birth to these fields. Today, these points of intersection between fields would appear as infinitely thin lines of energy across space.

Several simulations have shown, if they exist well, the distribution of the cosmic strings during the evolution of the Universe. These topological defects are provided by many theoretical models. Credits: Nature

Most physicists think that the standard model is incomplete. " Many extensions of the standard model naturally lead to cosmic strings after inflation. So, what we have is an object that is predicted by many models. Therefore, if they do not exist, all these models are excluded.

Cosmic strings: they would be impossible to detect in the cosmic microwave background

Hern谩ndez and Razvan Ciuca of Marianopolis College in Westmount, Quebec, had previously argued that a convolutional neural network - a powerful type of pattern search software - would be the best tool for locating string evidence in the CMB.

Assuming a perfect and noise-free CMB card, they wrote in a separate article in 2017, a computer using this type of neural network should be able to find cosmic strings even if their energy level (or "voltage") is remarkably low.

But in this new article published on the arXiv server , they showed that in reality, it is almost impossible to provide enough CMB data for the neural network to detect these potential strings. Other brighter microwave sources obscure the CMB and are difficult to disentangle completely. Even the best microwave instruments are imperfect, with limited resolution and random fluctuations in the accuracy of recording from one pixel to another.

They found that all these factors, and more, added to a level of information loss that no current or planned CMB recording and analysis method could ever overcome. This method of chase cosmic strings is a dead end. This does not mean that everything is lost, however.


A new method for detecting cosmic strings

A new method based on measurements of the expansion of the universe in all directions, in old parts of the Universe, could work. This method - called 21-centimeter intensity mapping - does not rely on the study of individual galaxy motions or on accurate CMB images.

Instead, it is based on measurements of the rate at which hydrogen atoms move away from the Earth, on average, in all parts of deep space. This method should be able to provide sufficiently constrained data to restart the hunt for cosmic strings.


Bibliography:

Information Theoretic Bounds on Cosmic String Detection in CMB Maps with Noise
Razvan Ciuca1  Oscar F. Hern´andez1,2†

1Department of Physics, McGill University, 3600 rue University, Montr´eal, QC, H3A 2T8, Canada

2Marianopolis College, 4873 Westmount Ave.,Westmount, QC H3Y 1X9, Canada

Source

Sperm whale found dead on Scottish coast with 100 kg of waste in stomach


With the rise of human industrial activities, ocean pollution has grown steadily in recent years, including plastic pollution whose signs are now visible in all oceans and seas of the world. The first victims of this situation are marine animals ingesting plastic waste. Many stranded marine mammals have, in recent years, been found with alarming amounts of objects in their stomachs. But recently, it is a new sinister record that has been established on the Scottish coast, where a sperm whale has been found with 100 kg of various waste in the stomach.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 馃槉

The young sperm whale ( Physeter macrocephalus ) ran aground on November 28 at Luskentyre Beach, Scotland, in the Outer Hebrides Islands. He died shortly after. Fishing nets, ropes, tubes and an assortment of plastic wastes formed a compact mass inside the 20-tonne animal, and some appeared to have been there for some time.



The skin and fat of the whales isolating them so effectively, the bacteria inside a corpse of whale can multiply quickly, even when the temperature of the air is low. While bacteria help decompose leftovers, they produce gases that build up pressure inside the body, and the sperm whale on the Scottish beach was no exception.

After having naturally opened in two under the effect of internal gases, the sperm whale's body revealed 100 kg of various waste: ropes, nets, plastic bags, etc. Credits: SMASS

He "somehow exploded" during the examination of his corpse. " By the time we got near the corpse to look at it, the sperm whale had been dead for 48 hours and most of the guts were blown when we put a knife in, " writes a SMASS representative.

To better understand coastal strandings of marine animals

SMASS researchers and volunteers collect and analyze data on stranded animals along the Scottish coast, which includes 790 islands and stretches 19,000 kilometers. By performing necropsies and studying the remains of failed marine life - sharks, porpoises, dolphins, sea turtles and seals, as well as whales - scientists can better understand the biological and environmental conditions that lead to stranding.

While the amount of waste inside the whale was impressive, the animal appeared to be in good health and not malnourished. It is likely that the scoop of ball was a hindrance to digestion, but SMASS experts found no evidence that ingested debris was blocking the whale's intestines.

Plastic pollution: a deadly global danger for all marine animals

Other sinister examples of dead whales with belly full of plastic that have been stranded on the coasts of other countries exist. A pregnant sperm whale that floated on an Italian beach in April, died with 22 kg of waste in its stomach, and a Cuvier's beaked whale that arrived in the Philippines in March had swallowed 40 kg of waste. Sperm whales that were stranded in 2018 in Spain and Indonesia also had indigestible masses in their belly.

Large marine mammals are not the only ones to suffer from ocean pollution. Here is a photo of Emily Mirowski, a marine biologist at the Gumbo Limbo Center, performing the autopsy of a turtle. You can see the pile of plastic pieces extracted from his stomach next to it. Credits: Gumbo Limbo Nature Center

In the United Kingdom, stranded marine animal bodies usually have microplastic particles in their bodies, although it is unclear how this affects their overall health. But animals stranded with large amounts of debris in the belly are rare in the British coast. In the recent grounding, the garbage assortment in the whale's gut highlights the global problem of widespread marine pollution caused by various human activities.



Tuesday, 3 December 2019

Scientists have found a place on Earth where there is no life

Hyperacid, hypersalated and hot ponds in the geothermal field of Dallol (Ethiopia). Despite the presence of liquid water, this multi-extreme system does not allow the development of life, according to a new study. Credits: Puri L贸pez-Garc铆a

"WHY A PLANET WITH  LIQUID WATER IS NOT ENOUGH, Forms of life have been found everywhere: in Antarctica, at the bottom of the deepest mines and even in the alkaline waters of the so-called Dead Sea, micro-organisms of all kinds proliferate. But to Dallol, in the depression of Dancalia, in Ethiopia, nothing seems to survive, says research published in Nature Ecology & Evolution"

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 馃槉

A volcanic crater full of salt that gives off smoky toxic gases, where the water boils in intense hydrothermal activity and the daily temperatures in winter can exceed 45 ° C. A hostile and multi-extreme environment: very hot, very salty and very acidic at the same time. We have not just crossed the gates of hell: we are at  Dallol , in the  Danakil depression , in Ethiopia. It is in this place that a team of Franco-Spanish scientists, led by biologists  Jodie Belilla and  Purificaci贸n L贸pez-Garc铆a of the French Cnrs, has discovered how it is impossible for forms of life to remain.

A few months ago,  another study - also conducted in Dallol and published in  Scientific Reports - which highlighted an opposite result: the  finding of nanobacteria . That territory, so apparently inhospitable, was described as a valid example for understanding the environmental limits of life, both on Earth and in other parts of the Solar System. And the geothermal area of ​​Dallol was proposed as a terrestrial analogue of a primitive Mars (as it was three billion years ago). The conclusions of L贸pez-Garc铆a and colleagues, now published in  Nature Ecology & Evolution, are of a different opinion . "After analyzing many more samples than the previous jobs - with appropriate controls to avoid contaminating them and with a well calibrated methodology - we verified that in these salty, hot and hyperacid pools the microbial life is absent. As it is absent in the adjacent salt lakes, rich in magnesium », emphasizes L贸pez-Garc铆a.



Yes, there is a great variety of  halophilic archaea (primitive microorganisms that live in highly saline environments) in the desert and in the canyons around the hydrothermal site," adds the biologist, "but not in the hyperacid and hypersaline pools, nor in the so-called black and yellow lakes of Dallol, where magnesium abounds. And this despite the fact that the microbial dispersion, in this area, is intense, due to the wind and human visitors ".

There are two obstacles to life that prevent micro-organisms from developing inside the ponds: the abundance of magnesium salts  caotropic - capable of breaking hydrogen bonds and causing protein denaturation - and the simultaneous presence of conditions such as l hypersalinity, hyperacidity and high temperature.

To confirm this, the team of scientists has used various research methods such as: massive sequencing of  genetic markers to detect and classify microorganisms, chemical analysis of  brines and  scanning electron microscopy combined with  X-ray spectroscopy , used to analyze silicon-rich mineral precipitates. «In other studies, in addition to the possible contamination of samples with  archaea from adjacent lands, these mineral particles may have been interpreted as fossilized cells, but in reality they form spontaneously in brines even if there is no life, "observes L贸pez-Garc铆a, pointing out that caution is needed in relying on the apparently cellular appearance - or "biological" - of a structure, because it could be non-living systems.

Microbial cells (left) can be easily confused with silica-rich mineral precipitates (right). Credits: Karim Benzerara, Puri L贸pez-Garc铆a et al

"We would never expect to find life in similar environments on other planets, at least not life that is not based on a biochemistry similar to that on earth," says L贸pez-Garc铆a, insisting on the need to have more clues and analyze all possible alternatives before reaching a conclusion. "Our study shows that there are places on the earth's surface, such as the pools of Dallol, which are sterile even if they contain water in the liquid state," concludes the researcher, remarking as a criterion such as the presence of liquid water, often used to suggest the habitability of a planet, does not necessarily imply the presence of life.




Bibliography:

Article: Hyperdiverse archaea near life limits at the geothermal polyextreme Dallol area

Authors: Jodie Belilla, David Moreira, Ludwig Jardillier, Guillaume Reboul, Karim Benzerara, Jose M. Lopez-Garcia, Paola Bertolino, Ana I. L贸pez-Archilla, Purification L贸pez-Garc铆a

Magazine: Nature Ecology & Evolution
Vol .: 3, pages 1552-1561

DOI: 10.1038 / s41559-019-1005-0

For the first time, the heartbeat of the blue whale has been recorded


With a length of up to 30 meters and a mass of up to 170 tonnes, the blue whale is currently considered to be the largest living animal and possibly the oldest living on Earth. To assume the physiological needs of such a template, the heart of the blue whale must be strong enough. Although marine biologists already knew that the animal's heart rate changes relatively quickly as it dives for food, they were surprised to find out how much. Indeed, during a dive, the heart of a blue whale goes from about 30 beats per minute to only 2.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 馃槉

This is what a team of marine biologists discovered after recording for the first time the heartbeat of a blue whale. After placing a pulse monitor on a blue whale off the California coast, the researchers watched the gigantic creature sink and return to the surface for nearly 9 hours, alternately filling her lungs with air and her belly with hundreds of Pisces.


A heart with rapid variations to ensure physiological needs

During these deep foraging dives, the whale's heart rate changes abruptly, going up to 34 beats per minute at the surface and only two beats per minute in the deepest waters - which is about 30 at 50% slower than the researchers expected.

According to the new study published in PNAS , the mere fact of catching prey could push the heart of a blue whale into its physical limits - which could explain why no larger creature than the blue whale has ever been spotted on Earth.

" Animals that work at physiological extremes can help us understand the biological limits of size, " says Jeremy Goldbogen, a marine biologist at Stanford University. In other words: If the heart of a blue whale could not pump faster to feed its daily foraging expeditions, how could the heart of a larger animal pump even faster for more even bigger energy?

A slow heart rate during the dive

Blue whales are the largest animals ever to have lived on Earth. As adults, they can be more than 30 meters long, about the size of two school buses parked end-to-end. It takes a big heart to propel a creature of this size. The heart of a blue whale can weigh up to 180 kg (2015 failed specimen), about the size of a golf cart.

Scientists already knew that the pulse of a blue whale had to slow down deeply. When air-breathing mammals dive underwater, their bodies automatically begin to redistribute oxygen; the heart and brain receive more O2, while muscles, skin and other organs absorb less O2. This allows the animals to stay underwater longer with a single breath, resulting in a significantly lower heart rate than normal.

Graphs showing heartbeat variations of the blue whale as a function of depth and position of the animal. Credits: JA Goldbogen et al. 2019

This is true for humans as well as for blue whales. However, given the gigantic size of the whale and its ability to dive more than 300 meters deep, their hearts are pushed to limits far beyond ours. To find out exactly how much a blue whale's heart rate changes during a dive, the authors followed a group of whales they had previously studied in Monterey Bay, California, and fixed a special mounted sensor at the end of a 6 m pole on one of them.

A cardiac transition from 30 to 2 beats per minute

The studied whale was a male first sighted 15 years ago. The sensor was equipped with a plastic shell the size of a lunch box, equipped with four suction cups, two of which contain electrodes to measure the heart rate of the whale.

The researchers set the monitor on their first attempt, and he stayed there for 8½ hours when the whale dipped and resurfaced during dozens of foraging "missions".

Most of this time was spent underwater: the whale's longest dive lasted 16.5 minutes and reached a maximum depth of 184 m, while it never spent more than 4 minutes on the surface to fill the lungs. The sensor showed that, deep within each dive, the heart of the whale beat on average four to eight times per minute, with a minimum of two beats per minute.

Graphs showing the heart rate of the blue whale according to its lung volume and depth. Credits: JA Goldbogen et al. 2019

Between these low-tempo beats, the stretched aortic artery of the whale slowly contracted so that the oxygenated blood slowly moved into the body of the animal. Back on the surface, the whale's heart rate accelerated to 25 to 37 beats per minute, which quickly loaded the animal's bloodstream with enough oxygen to support the next deep dive.

The biggest heart on Earth

During these quick stopovers, the heart of the whale skirted its physical limits - it is unlikely that the heart of a whale could beat faster than that. This natural heart limit may explain why blue whales reach a certain size and why no known animal on Earth has ever been so tall.



Since a larger creature would need more oxygen to support its long, deep dive for food, his heart would need to beat even faster to get oxygen back to the surface. According to the authors of the study, this does not seem possible on the basis of current data.

Video presenting the work done by the researchers:



Bibliography:

Extreme bradycardia and tachycardia in the world’s largest animal

ORCID ProfileJ. A. Goldbogen, ORCID ProfileD. E. Cade, J. Calambokidis, M. F. Czapanskiy, J. Fahlbusch, A. S. Friedlaender, W. T. Gough, S. R. Kahane-Rapport, M. S. Savoca, K. V. Ponganis, and P. J. Ponganis

PNAS first published November 25, 2019

https://doi.org/10.1073/pnas.1914273116

Monday, 2 December 2019

Unusual radio variations suggest the existence of a new type of binary star system


In current models, binary star systems generally describe couples involving giant stars with white dwarfs or stars like our Sun. In these systems, the smaller companion emits electromagnetic bursts under the gravitational effect of the giant star. Recently, astrophysicists have detected, in the Milky Way, a binary system involving a giant star and an undetermined companion, the couple not responding to the classical properties of such systems. Given the data collected so far, it could be a whole new class of binary system.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 馃槉

After observing part of the southern hemisphere sky near the constellation Altar for about two months using MeerKAT, a radio telescope based in the Karoo Desert in South Africa, astrophysicists have noticed something strange. The radio emission of an object illuminated by a factor of three, about three weeks of observation. Intrigued, they continued to look at the object and followed the observations of other telescopes. They discovered that the unusual object came from a system of binary stars in the Milky Way.



The results of the study were published in the journal MNRAS. This is the first time that MeerKAT has discovered a "transient source" - an unstable object that is undergoing a significant change in brightness. In view of his name, MKT J170456.2-482100, he was found in the first observed field with the telescope, which means that it is likely to be the tip of an iceberg of transient sources waiting to discovery.

Luminosity variations detected thanks to the collaboration of several telescopes

The researchers began by matching the source to the position of a star, called TYC 8332-2529-1, about 1800 light-years from Earth. Because this star is brilliant, they had predicted that a number of different optical telescopes, detecting visible light rather than radio waves, would have already observed it in the past. And fortunately, this turned out to be the case, allowing them to use these data to learn more about this giant star (2.5 solar masses).

Graphic and images showing radio emission variations observed by astrophysicists. Credits: LN Driessen et al. 2019

Some of the optical telescopes, including ASAS, KELT and ASAS-SN, have provided more than 18 years of star observations. These revealed that the brightness of the star changed over a period of 21 days. Astrophysicists used the SALT telescope to obtain the optical spectra of the star. This can be used to determine the chemical elements present in the star, as well as the presence of a magnetic field.

In addition, they allow scientists to know if a star is moving, because the movement causes the shift of spectral lines (Doppler shift). Spectra revealed that the star had a magnetic field and gravitated around a companion star every 21 days.

A stellar companion of unknown nature

However, only a very weak signature of the companion star is visible. This suggests that the companion must be of less mass than the giant star, with however 1.5 solar masses. So, what could this companion be? A white dwarf may seem likely, as they are often part of binary star systems like this one. However, most have a lower mass than the companion observed.

The radio emission itself could be caused by the magnetic activity of the giant star, similar to a solar flare but much brighter and more energetic. However, these eruptions are usually observed on dwarf stars rather than on giant stars.

Many binary systems involve a giant star and a white dwarf, so the electromagnetic bursts result from the accretion of matter of the second by the first. But the different data collected show that this is not the case of the newly discovered system. Credits: Pearson Ed

Known star systems associating a giant star and a star similar to the Sun could explain the results obtained, the magnetic activity of the giant star giving rise to light flares. However, that does not suit, because nothing indicates in the spectrum that the binary companion is actually a star similar to that of the Sun.


A new class of binary system?

Ben Stappers, the principal investigator of MeerTRAP, one of the teams working on the project, explains that since the properties of the system do not fit easily with our current knowledge about binary stars, it could represent a source class entirely news. It could be a kind of exotic system never seen before and involving a giant star emitting radiation in orbit around a neutron star.



MeerKAT will continue to observe this source every week for the next four years as the ASAS-SN optical telescope continues to observe the giant star. This will inform the dynamics of this system, how the bursts occur, and ultimately help to understand how it was formed.


Bibliography:

MKT J170456.2–482100: the first transient discovered by MeerKAT

L N Driessen, I McDonald, D A H Buckley, M Caleb, E J Kotze, S B Potter, K M Rajwade, A Rowlinson, B W Stappers, E Tremou ...

Monthly Notices of the Royal Astronomical Society,
Volume 491, Issue 1, January 2020, Pages 560–575,
https://doi.org/10.1093/mnras/stz3027
Published: 30 October 2019

A new theoretical type of time crystal might not require energy input


A few years ago, physicists presented a new structure of matter with amazing properties: temporal crystals. In these crystals, atomic structures form patterns of arrangement that are repeated in both space and time. However, to induce such a structure, an initial energy supply to the ground state is necessary. But in a recent article, a team of physicists showed, using a model of string theory, that it would be possible to obtain such crystals without this energy input. An attractive theory, but whose experimental realization seems unlikely.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 馃槉

The method involves inciting entangled particles to influence the spin of others over a certain distance. Temporal crystals may seem like a science fiction concept, but they are a real phenomenon, theorized for the first time in 2012. From the outside, they look like normal crystals. But inside, the atoms - arranged in a repeating network structure otherwise normal - behave in a very special way.

They oscillate, turning in one direction then in the other. These oscillations, called "tics", are blocked on a very regular and particular frequency. Thus, where the structure of ordinary crystals repeats itself in space, in temporal crystals, it is repeated in space and in time.


Quantum intricacy: it would render unnecessary energy input into time crystals

Until now, experimentally produced time crystals have required an external stimulus (such as an electromagnetic radiation pulse) in the ground state, or in the lower energy state, to induce their ticking. This was done in 2016. According to a 2015 article, it seemed that a temporal crystal without adding energy to its ground state was simply physically impossible. In physics, we speak of "no-go theorem".

In the solution proposed by the researchers, each particle interacts with the others in the crystalline structure at long distances, thanks to the phenomenon of quantum entanglement (arrows). Credits: J. Zhang et al.

There is, however, a notable exception to this theorem with respect to time crystals. This is what Valerii Kozin of the University of Iceland in Reykjav铆k and Oleksandr Kyriienko of the University of Exeter in the United Kingdom, used to address the problem in their article published in the journal Physical Review Letters.

The 2015 article assumes that interactions between particles decrease with distance. But there is a practical exception. The entangled particles have a relationship that does not weaken with distance.

Measuring the spin of a particle will immediately determine the spin of its entangled partner, regardless of its distance. According to physicists, in time crystals, such a remote interaction could theoretically produce a fundamental state of temporal crystals requiring no energy injection.

A very theoretical solution brought by the string theoryb

In their new article, the researchers propose a system of particles in the temporal crystal, each having a rotation. They demonstrate that there is a way to describe entangled particle spins using a string theory model that corresponds to the definition of a time crystal given in the 2015 article.



Even if the particles were spinning out of sync, the interactions between the particles would produce the ticking of a time crystal, according to the authors. However, this system would be incredibly complicated, each particle can have a spin superposition. In fact, the whole thing might not be feasible in a laboratory. Intricating particles in this way is an idea that works well on paper, but is hardly practical in practice. We therefore look forward to any experiments that will ensue.


Bibliography:

Quantum Time Crystals from Hamiltonians with Long-Range Interactions

Valerii K. Kozin and Oleksandr Kyriienko
Phys. Rev. Lett. 123, 210602 –

Published 20 November 2019

https://doi.org/10.1103/PhysRevLett.123.210602

Sunday, 1 December 2019

Tesla wants to equip its cars with a laser system to automatically remove dirt from windshields


In recent years, Tesla has been developing a technology that seems to have come out (once again) of a sci-fi film: a laser beam system intended (among other things) for its vehicles, whose function is the automatic elimination of accumulated dirt on the windshield.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 馃槉

After the announcement of its Cybertruck , the public has more than ever understood the avant - garde trend that the brand has been following since its debut. The "laser washer" system (let's call it that) first lets think of a hoax, but it is not so. This is indeed a serious project that has already been the subject of a patent.

Earlier this year, Tesla filed a patent application entitled "Cleaning Debris Accumulated by Laser Pulse on Vehicle Glass Components and Photovoltaic Assemblies". The document was made public this week.



Phiroze Dalal, a specialist in scientific and industrial imaging at Tesla, considered the inventor of the innovative system, describes the patent :

"A vehicle cleaning system that includes an optical assembly emitting a laser beam for irradiating a region on a vehicle glass member, a debris detection device that detects accumulated debris in the area, and a circuit for detecting command.

The controller calibrates a set of parameters associated with the laser beam emitted by the optical assembly based on the detection of debris accumulated on the glass area. It controls the level of exposure of the laser beam to accumulated debris as a function of the calibration of the set of parameters associated with the beam, in which the exposure level is controlled according to the laser beam pulse at a calibrated rate which limits the penetration to a depth less than the thickness of the detritus, and eliminates them ".

You are granted, based on this description, it is difficult to conceive what could actually look like such a laser system. To help you, here are two first technical drawings from the document.

Technical drawings showing the laser system for windshields. Fig. 2B: distant 3D view. Fig. 2A: close lateral sectional view. Credits: Tesla

Tesla explains that the system could be particularly useful for automatically removing any debris obstructing the camera's autopilot camera lens. In addition, the company plans to take advantage of the system to automatically clean dirt from solar panels on rooftops.

Drawing showing the laser system for photovoltaic panels. Credits: Tesla


However, we remind you that a patent application does not ensure the placing on the market of an associated product. Tesla, like many large corporations, often file patents that end up in the archives without ever being commercially exploited.



As a result, we do not know for sure what will happen to this technology. But knowing the ambitions of Elon Musk, it is likely that the system "washer-ice" laser is installed on future Tesla models.

Source

Equipping the cows with a virtual reality headset could make them produce better milk



Apparently, the virtual reality is not just for humans ... According to a new Russian experience to say the least unusual, cows wearing a VR helmet displaying virtual environments and stimulants would be in a better mood, and thus would produce a better milk quality.

Please support by Sharing the article and also by visiting the ads in the post, your little click can help us to keep posting the beneficial Stuff, please leave a comment if you have any suggestions:
And Please follow us on Twitter  and Facebook
Thank you 馃槉

Farmers in the Moscow region have placed modified VR (virtual reality) helmets on cows to determine whether such visual (and sonic) stimulation would improve their mood and, consequently, their milk production.

As part of the study project, the livestock benefited from a realistic 3D model of a field, with colors adapted to the animals' eyes, thus offering them a landscape much more pleasant than their confined space within a closed. The helmets have been adapted to the structural features of the cow heads so that they can see properly.


Collaboration between farmers, developers and veterinarians

The technique, proposed by Russian farmers in collaboration with developers and veterinarians, seems to have worked, at least in terms of cow mood.

The first test, conducted on a farm in Krasnogorsk, northwestern Moscow, reduced cow anxiety and increased their overall sense of well-being. Although it is not yet certain that this affects the quality or volume of milk production, a more "comprehensive" study is planned to answer this question.

However, this experience raises some questions: Why not just leave the cows more often in the fields? Is there a risk of disturbing the animals when their helmet has to be removed (for maintenance or changing the battery for example), thus temporarily revealing the sad reality hidden to them?

In a way, it is a solution to a problem created by Man ... But it is equally obvious that this could be considered as an "option" for farms that do not have enough (or at all ) open fields, or for which existing techniques (such as playing nice music) may not be effective.

System developers, meanwhile, plan to extend the VR experience if observations continue to show positive results.



Source